

ANNEX A
(To Recommendation T.101)

xe ""§Interworking data syntax (IDS)
described in ASN.1 (Recommendation X.208)

Preamble

For Videotex interchange:
a) If two countries implement the same data syntax, then interworking can use the same

data syntax (DS I, or DS II, or DS III).
b) If two countries implement two different data syntaxes, then interworking can use

either:
i)
ii)
III. The data syntaxes may be identified by the ESC 2/5 F mechanism described
in § 4.4.2 of the main body of Recommendation T.101.

If the IDS is used, then the Administration in which country the data base is located will
be responsible to convert into the IDS and the Administration in which country the user terminal
is located will be responsible to convert from the IDS.

If the direct conversion method is used instead of using the IDS, the IDS would serve as
a technical guide in designing the conversion process.

The IDS is not intended to be used in terminal to host communications.

A.1 xe ""§Videotex page

A Videotex page in the interworking data syntax (IDS) is a sequence of presentation
commands expressed in a manner independent of any of the terminal data syntaxes. This
formulation of the presentation information which composes a Videotex page is intended to aid
interworking between basically different terminal data syntaxes. It does this by isolating the
unique and common elements between each of the data syntaxes. The interworking data syntax is
not meant to be used as a terminal data syntax in its own right. One encoding of the interworking
data syntax is that defined in Recommendation X.209. Other types of encoding are for further
study.

Videotex–Page
::= SEQUENCE OF Presentation–Commands

Presentation–Commands
::= SEQUENCE { State–Vector, Function–&–Parameters }

A.2 xe ""§State vector

Fascicle VII.5 – Rec. T.101 13

A state victor is defined along with each presentation command to establish the
relationship of that presentation command to each other presentation command. Although the
information explicitly contained in the state vector is also implicitly contained within each
presentation command, it would require the conversion apparatus to fully understand each of the
three terminal oriented data syntaxes to uncover this information. Therefore a state vector is
included with each presentation command in which a global state is affected or in which a
boundary value is encountered, so that the conversion process might operate on a general level.

State–Vector
::= CHOICE { [1] Vector–Definition

[2] Reset–State–Vector,
[3] NULL }

A.2.1 Vector definition

Vector–Definition
::= SEQUENCE { Global–State–Affected–Indicator,

Terminal–Model–Precedence,

Boundary–Condition–Definition }
–– Only that information which changes between state vectors need be communicated. If

there is no change in a particular component of the state vector, then that component
need not be communicated. This means that the state vector is not communicated often
and does not introduce significant overhead.

14 Fascicle VII.5 – Rec. T.101

A.2.1.1 xe ""§Global state affected indicator

The global state affected indicator carries information relating to the global states of the
presentation data syntax. Global state variables are variables representing those states of the
presentation data syntax which are established by presentation commands and which carry on to
affect the results of subsequent presentation commands. By declaring the global state variables
explicitly, it is not necessary for the conversion process to undarstand the interrelationship
between presentation commands. This means that the conversion process does not have to
simulate a terminal of the source data syntax in order to handle the conversion of its elements.

The global state affected indicator does not carry information about the value to which a
global state has been set. That information is carried within the `Function and Parameter` section
of the IDS. The indicator merely identifies which states have changed. This is of great
importance in situations where it is necessary for the conversion process to sort the presentation
commands to account for differences in the terminal model used in the source and destination of
the interchange. If the order of presentation commands is altered, the conversion process must
establish the appropriate global variables before each command in the altered sequence. By
referring to the global state affected indicator, the conversion process can determine which global
states must be re–established. For example, if a sorting of presentation commands is necessary to
convert from a multi–plane to a single plane terminal mode, and colour control commands have
been used, then the global state affected indicator will indicate that the appropriate colour state
must be established ahead of each portion of the sorted data.

In some of the terminal data syntaxes attributes have global effects while in other data
syntaxes the effects are localized according to the particular display primitive type. For example,
in Data Syntax III a colour command remains in effect for all primitives, until the next colour
command, whereas in Data Syntax II there are various colour states which apply independently
to different primitives, such as LINE colour, FILLED AREA colour, etc. The global state
indicator carries a reference to a number of independent `attribute state vectors` which define the
attribute context. For those data syntaxes which make use of only global parameters, only one
`attribute state vector` need be referenced. For other data syntaxes which make use of multiple
localized attributes, several `attribute state vectors` may be referenced.

Global–State–Affected–Indicator ::= SEQUENCE {
attribute–state–vector–reference

INTEGER,
attribute–affected–indicators

SEQUENCE OF {

INTEGER {
current–text–position

(1),
current–foreground–colour

(2),
current–auxiliary–colour

(3),
lining–state

(4),

Fascicle VII.5 – Rec. T.101 15

flash–blink–state
(5),

basic–char–size–state
(6),

conceal–state
(7),

char–invert–box–state
(8),

char–marking–state
(9),

screen–protection–state
(10),

display–control–state
(11),

device–control–state
(12),

cursor–control–state
(13),

geometric–control–1–state
(14),

geometric–control–2–state
(15),

wait–state
(16),

general–text–state
(17),

p–text–state
(18),

geometric–text–state
(19),

DRCS–definition–state
(20),

macro–definition–state
(21),

texture–pattern–state
(22),

music–part–memory–state
(23),

animation–configuration–state
(24),

workstation–configuration–state
(25)

} } }

16 Fascicle VII.5 – Rec. T.101

–– The Global State Affected Indicator consists of a set of indicator flags which identify
particular global states or in some cases categories of global states which may be altered
by presentation and control commands. Some states, such as all the forms of Flashing
and Blink processes, are grouped together for simplicity.

A.2.1.2 xe ""§Terminal model

The terminal model differs significantly between the various terminal data syntaxes. For
the presentation of static images this manifests itself in the manner by which presentation
commands overlay each other. A picture developed for a multi–plane terminal model can be
represented on a terminal using a single–plane terminal model or a multi–plane terminal model
with a different order of precedence for the planes, by sorting the presentation commands so that
they build up an equivalent picture. The sorting operation is necessary since otherwise the
buildup order might conflict with the precedence order in the new environment. The terminal
model precedence indicator is simply a numeric indicator of the overlay precedence for
presentation commands intended by the source terminal data syntax. The conversion process is
independent of the terminal model or a particular data syntax and simply sorts presentation
commands based on this indicator. Note that certain commands such as resets which have an
effect in more than one plane of a terminal model might have to be repeated in different parts of
the presentation sequence after the sort. The terminal model precedence indicator consists of a
sequence of numbers to indicate the effect of a command across the terminal model.

Terminal–Model–Precedence ::= INTEGER

–– The terminal model precedence indicator is a number which indicates the order of
precedence of the identified presentation information. The number `1` indicates that the
identified information is of highest precedence and should be placed in front of any other
information currently displayed. The number `2` indicates that the identified information
is of the second level of precedence and should be placed behind any level `1`
information but ahead of any other level information. For example, Data Syntax II Text
and Mosaic data is level `1` information, whereas geometric information may be level
`1` or level `2`. For Data Syntax III, all of the information is at level `1` since the
precedence order by which it is displayed is determined only by the order in which the
information is communicated. For Data Syntax I, the order is not fixed since certain
`planes` of memory may be changed in precedence by the ASSIGN FRAME command.

–– The value `0` has special meaning for the Terminal Model Precedence Indicator. It
indicates that the identified information requires special interpretation. Such special
information includes partial reset commands which affect more than one layer of the
terminal model, as well as commands having a time dependent effect, specifically
WAIT, the BEL character, and REVEAL.

A.2.1.3 Boundary conditions

Fascicle VII.5 – Rec. T.101 17

Boundary condition variables represent the limits within which the particular
presentation command has been defined. Each presentation command takes on its normal
interpretation only within a certain range of values. For example, the number of characters which
may be displayed on the screen varies between each of the source terminal data syntaxes, and
therefore the operation of presenting a single character cannot be considered to be the same in
each terminal data syntax. To factor out the commonality, the boundary condition of
encountering the edge of the display area is identified separately from the presentation of a
character. This aids conversion since it means that the boundary conditions applying to each
presentation command are given explicitly. The conversion process is therefore independent of
the internal boundary conditions within each of the source terminal data syntaxes.

Boundary–Condition–Definition ::= SET { [1] Screen–Dimensions,

[2] Colour–Map–Limit,

[3] Presentation–Sub–Area,

[4] Char–Mode–Constraints,

[5] Coordinate–Limit–Polygon,

[6] Coordinate–Limit–Spline,

[7] Presentation–Resolution,

[8] Macro–Seg–Memory–Limit,

[9] DRCS–Memory–Limit,

[10] Direct–Colours–Limit }

18 Fascicle VII.5 – Rec. T.101

A.2.1.3.1 Screen dimensions

Screen–Dimensions
::= SEQUENCE { INTEGER, INTEGER }

–– Screen–Dimensions indicates the aspect ratio of the display screen expressed in terms of
a fraction of the Y and a fraction of the X unit dimensions, where the INTEGER number
represents a binary fraction with an implied binary point before the most significant bit.
Note that a dimension of (1,1) implies no geometric constraint. A character mode service
could use (1,1) to imply no constraint.

A.2.1.3.2 Colour map limit

Colour–Map–Limit
::= INTEGER

–– The colour map limit indicates the maximum number of colours which may be stored in
a single colour map, or the combined total for multiple colour maps, and represents the
maximum number of colour states which may be encountered in a particular presentation
page. In the case where no colour map is used, the integer specifies the number of fixed
colours.

A.2.1.3.3 Presentation sub–area

Presentation–Sub–Area
::= SEQUENCE { Abs–Coord, Rel–Coord, INTEGER, INTEGER }

–– The two coordinates give the boundary dimensions of a sub–area of the display screen
both in terms of the dimensions of the sub–area and the number of characters per row
and the number of columns. The absolute coordinate specifies the origin of the sub–area,
the relative coordinate the size of the sub–area and the INTEGER coordinates the limit
on characters per row and rows respectively.

A.2.1.3.4 Char mode constraints

Char–Mode–Constraints
::= SEQUENCE { INTEGER, INTEGER }

–– The two parameters give the limit to the number of characters per row and the number of
rows of text which may be presented on the display screen; that is, the the boundaries at
which character (or word) wrap and scroll will occur.

A.2.1.3.5 Coordinate limit polygon

Coordinate–Limit–Polygon
::= INTEGER

–– The polygon coordinate limit specifies the maximum number of coordinates which may
be specified for a filled polygon.

A.2.1.3.6 Coordinate limit spline

Coordinate–Limit–Spline
::= INTEGER

Fascicle VII.5 – Rec. T.101 19

–– The spline coordinate limit specifies the maximum number of coordinates which may be
specified.

A.2.1.3.7 Presentation resolution

Presentation–Resolution
::= SEQUENCE { INTEGER, INTEGER }

–– The presentation resolution specifies the nominal resolution of the display screen which
was used by the information source.

A.2.1.3.8 Macro seg memory limit

Macro–Seg–Memory–Limit
::= INTEGER

–– The macro memory limit specifies the upper bound on the amount of memory which is
available for the storage of Macros or Segments. The INTEGER parameter represents
available memory expressed in bytes.

A.2.1.3.9 DRCS memory limit

DRCS–Memory–Limit
::= INTEGER

–– The DRCS memory limit specifies the upper bound on the amount of memory which is
available for the storage of DRCS. The INTEGER parameter represents available
memory expressed in bytes.

A.2.1.4 Data syntax identifier (SID)

SID ::= IMPLICIT INTEGER { data–syntax– I
(1),

data–syntax– II
(2),

data–syntax–III
(3) }

–– SID is an identifier which is referenced in a number of primitive commands and which
identifies the source data syntax of the command.

A.2.2 Reset state vector

Reset–State–Vector ::= SEQUENCE { SID, Vector–Definition }

–– The Reset State Vector command is used to establish the initial state for the Interworking
Data Syntax. The default state may be selected from the table corresponding to the
source terminal data syntax (or profile) given in Appendix II. Alternate parameters may
be specified by use of explicit state vector and function and parameter definitions.

A.2.3 NULL

NULL implies that the state vector is unchanged from the previous presentation
command.

A.3 Functions and parameters

20 Fascicle VII.5 – Rec. T.101

The functions and parameters which make up the presentation commands are grouped
into categories which depend upon their commonality between the various terminal data
syntaxes. Those functions which are compatible, such as the basic repertoire of alphanumeric
characters defined in Recommendation T.51, define separate groups. Those functions which are
unique, such as certain specific special characters, also establish separate groups so that they may
be converted or otherwise handled in a special manner. Functions such as DRCS and graphics
drawing commands, which differ in fundamental ways between the various terminal data
syntaxes, are organized so that those underlying capabilities which are common may be exploited
in the necessary conversion process.

Functions–&–Parameters ::= CHOICE { [0] Alpha–Char–String,
[1] Special–Char–String,
[2] Kana–Char–String,
[3] Kanji–Char–String,
[4] Block–Mosaic–String,
[5] Smooth–Mosaic–String,
 [6] Special–Mosaic–String,
[7] Format–Effector–C0–Chars,
[8] Special–Format–C0–Characters,
[9] General–Control–Characters,
[10] Geometric–String,
[11] Animation–Control–String,
[12] Segment–Control–String,
[13] Colour–Control–String,
[14] Text–Control–String,
[15] Photo–Graphic–String–Syntetic–Image,
[16] Photo–Graphic–String–Natural–Image,
[17] MACRO–String,
[18] DRCS–String,
[19] Fill Pattern–Control–String,
[20] Music–String,
[21] Tele–Software–String,
[22] Audio–Data–String,
[23] Greek–Char–String }

The first six categories of functions and the last one are various text or mosaic
characters. None of the terminal data syntaxes defined in Recommendation T.101 encompasses
all of these characters. There are different unique characters in each of the terminal data
syntaxes. However, a large portion of the repertoire is common between the different terminal
data syntaxes, although the characters may be coded differently. Since coding is irrelevant here,
and the use of particular tables could in fact cause serious confusion, characters extracted from
the different character repertoires will be distinguished by the identifier name codes for each
character as defined in Recommendation T.51. Since all of the terminal–oriented data syntaxes in
Recommendation T.101 do not explicitly make use of these name codes in the body of the
Recommendation, the entire character repertoire, together with the name codes for each character
are included here as an appendix.

Fascicle VII.5 – Rec. T.101 21

A.3.0 Alpha char string

Alpha–Char–String
::= GRAPHICSTRING

–– Characters (LA01 to LZ30, ND01 to ND09 and ND10, SC01 to SC05, SP01 to SP22,
SA01 to SA07, NS01 to NS03, NF01 to NF21, SM01 to SM44 and SM47 to SM49, and
SD11 to SD43) taken from Repertoire 1 which are the characters from the primary and
supplementary character sets of Recommendation T.51 together with the SPACE
character (SP01) and DELETE character (SM34).

–– The coding of characters within an Alpha Character String will be taken from the IRV
primary character code table (ISO Registration Number 2 under ISO 2375) and the
secondary code table for use with IRV from ISO 6937/2 (ISO Registration Number 90).

–– Note – The coding for the character $ “Dollar Sign” (SC02) will be taken from the
supplementary character set.

–– Note – The coding for the character ## “number sign” (SM01) will be taken from the
primary character set.

–– Note – The coding for the character “general currency sign” (SC01) will be taken from
the primary character set.

A.3.1 Special char string

Special–Char–String
::= INTEGER { non–spacing–vector–overbar

(1),

non–spacing–slant
(2),

left–vertical–bar–jointive
(3),

right–vertical–bar–jointive
(4) }

–– Non–Spacing–Vector–Overbar is a character (SM50) from Repertoire 2.

–– Non–Spacing–Slant is a character (SM51) from Repertoire 2.

–– Left–Vertical–Bar–Jointive is a character (SM45) from Repertoire 2.

–– Right–Vertical–Bar–Jointive is a character (SM46) from Repertoire 2.

A.3.2 Kana char string

Kana–Char–String
::= GRAPHICSTRING

–– Characters (JA01 to JA63) taken from Repertoire 3.

22 Fascicle VII.5 – Rec. T.101

–– The coding of characters within a Kana Character String will be taken from the Kana
character code table (ISO Registration Number 56 under ISO 2375).

A.3.3 Kanji char string

Kanji–Char–String
::= GRAPHICSTRING

–– Characters (JK01 to JK2980, HK01 to HK83, and JS01 to JS366) from Repertoire 4.

–– The coding of characters within a Kanji Character String will be taken from the two byte
Kanji character code table (ISO Registration Number 87 under ISO 2375).

–– Note – The characters in this two byte code table which overlap other defined videotex
character set are not considered to be part of Repertoire 4, and therefore are
communicated as characters from Repertoire 1, Repertoire 3 or Repertoire 8 where
appropriate. Specifically this involves the Latin alphanumeric characters (LA01 to
LZ30), and non–alphabetic characters (ND01 to ND09 and ND00, SC01 to SC05, SP01,
SP02, SP04 to SP15, SP17 to SP22, SA01 to SA07, NS02 to NS03, NF01 to NF05,
SM01 to SM14, SM19, SM24 to SM34, SM38, SM43, SM44, SM47, SM48, and SD11
to SD43) from Repertoire 1, the Kana characters (JA01 to JA63) from Repertoire 3, the
drawing characters (DG01 to DG04, DG13 to DG24, and DG32) from Repertoire 8,
which have an alternate coding within the two byte code, but which are included in other
Repertoires.

A.3.4 Block mosaic string

Block–Mosaic–String ::= GRAPHICSTRING

–– Block Mosaic characters (MG01 to MG63) taken from Repertoire 7.

–– The coding of characters for the Block Mosaic sub–Repertoire is identical between the
three terminal data syntaxes defined in CCITT Recommendation T.101. The set is
registered with ISO Number 129 under ISO 2375.

A.3.5 Smooth mosaic string

Smooth–Mosaic–String ::= CHOICE { [1] Sub–Cell–Aligned–Smooth–Mosaics,
[2] General–Smooth–Mosaics }

A.3.5.1 Sub–call aligned smooth mosaics

Sub–Cell–Aligned–Smooth–Mosaics ::= GRAPHICSTRING

–– Smooth Mosaic characters (SG01 to SG56) taken from Repertoire 8.

–– The coding of characters for the Sub Cell Aligned Smooth Mosaic sub–Repertoire is
identical between the two terminal data syntaxes defined in Recommendation T.101
which makes available these characters. These are registered as Numbers 71 and 72
under ISO 2375.

A.3.5.2 General smooth mosaics

General–Smooth–Mosaics ::= GRAPHICSTRING

–– Smooth Mosaic characters (MS01 to MS28) taken from Repertoire 8.

Fascicle VII.5 – Rec. T.101 23

–– The coding of characters for the General Smooth Mosaic sub–Repertoire is taken from
the terminal data syntax in CCITT Recommendation T.101 which makes available these
characters. This code table is registered under ISO 2375 as Registration Number 137.

A.3.6 Special mosaic string

Special–Mosaic–String ::= CHOICE { [1] Drawing–Characters,
[2] Other–Special–Mosaics }

A.3.6.1 Drawing characters

Drawing–Characters
::= GRAPHICSTRING

–– Drawing characters (DG01 to DG50) taken from Repertoire 10.

A.3.6.2 Other special mosaics

Other–Special–Mosaics ::= INTEGER { open–left–half–oval
(1),

open–right–half–oval
(2),

filled–left–half–oval
(3),

filled–right–half–oval
(4),

reverse–left–half–oval
(5),

reverse–right–half–oval
(6) }

–– Open–Left–Half–Oval is a Special Mosaic characters (MS13) from Repertoire 11.

–– Open–Right–Half–Oval is a Special Mosaic characters (MS14) from Repertoire 11.

–– Filled–Left–Half–Oval is a Special Mosaic characters (MS30) from Repertoire 11.

–– Filled–Right–Half–Oval is a Special Mosaic characters (MS29) from Repertoire 11.

–– Reverse–Left–Half–Oval is a Special Mosaic characters (MS15) from Repertoire 11.

–– Reverse–Right–Half–Oval is a Special Mosaic characters (MS31) from Repertoire 11.

The function and parameter categories 7 and 8 contain basic control characters which are
used to control the state of presentation of alphanumeric text and mosaic characters (including
DRCS). These control characters can be broken down into two categories, format effector control
characters and special format control characters. The format effector control characters have
basically the same meaning in each of the three terminal data syntaxes. The only difference is
how the functions invoked by these control characters interact with the terminal model and
display environment of the various terminal data syntaxes; for example, they may apply to only
one plane of display in a multi–plane terminal model or to all planes of display. The coding of
the format effector characters is also compatible between the terminal data syntaxes.

24 Fascicle VII.5 – Rec. T.101

The special format control characters in category 8, in general have a special meaning
which is not shared by all of the data syntaxes. These functions must be specially converted
during interworking, even between data syntaxes which appear to assign the same meaning to a
particular control function. This is because the terminal model and display environment of the
various terminal data syntaxes are quite different. The Bell character is included in this category
because it requires special handling due to the timing of presentation. If a sorting of presentation
commands is required in the interworking conversion process to accommodate differences in a
terminal model, such as the handling of data intended for a multi–plane terminal on a single
plane terminal, then the time of presentation of the Bell character must be altered.

A.3.7 Format effector C0–char

Format–Effector–C0–Char ::= GRAPHICSTRING

–– Format Effector C0 characters (APB, APF, APD, APU, CS, APR, APH) taken from
CCITT Recommendation T.101 DS I, II, III; (C0 code table positions 0/8 to 0/13 and
1/14 respectively)

–– APB –
Active Position Back – analogous to ISO 646 (FE0 BS)

–– APF –
Active Position Forward – (FE1 HT)

–– APD – Active Position Down – (FE2 LF)

–– APU – Active Position Up – (FE3 VT)

–– CS – Clear Screen – (FE4 FF)

–– APR –
Active Position Return – (FE5 CR)

–– APH – Active Position Home

A.3.8 Special format–C0–char

Special–Format–C0–Char ::= CHOICE { [1] Bell–Character,
[2] Position–Set,
[3] Cancel–Macro,
[4] Non–Selective–Reset,
[5] Cancel–Row }

A.3.8.1 Bell character

Bell–Character
::= GRAPHICSTRING

–– Special C0 character (BEL) from Recommendation T.101 DS I, III (C0 set positions
0/7).

–– Note – This function provides an audio signal to the user of the terminal device. This
function is not available in all of the terminal data syntaxes, and cannot be simulated in a
reasonable manner.

A.3.8.2 Position set

Fascicle VII.5 – Rec. T.101 25

Position–set
::= SEQUENCE { INTEGER, INTEGER }

–– This function provides the equivalent capability of both the Active Position Set
command (APS) from Recommendation T.101 DS I, III and the positioning portion of
the Active Position Address command (APA) from DS II.

–– The parameters to establish the new screen active position as a count of “current size”
character cells from the “home” upper left position.

26 Fascicle VII.5 – Rec. T.101

A.3.8.3 Cancel macro

Cancel–Macro
::= GRAPHICSTRING

–– Special C0 character [CAN (Macro)] from Recommendation T.101 DS I, III (C0 set
positions 1/8).

A.3.8.4 Non–selective reset

Non–Selective–Reset
::= SEQUENCE { [1] NSR–Code,

[2] Position–Set OPTIONAL }
NSR–Code ::= GRAPHICSTRING

–– Special C0 character (NSR) from Recommendation T.101 DS I, III (C0 set positions
0/15). The positioning parameter sequence is optional.

A.3.8.5 Cancel row

Cancel–Row
::= GRAPHICSTRING

–– Special C0 characters [CAN (Row)] from Recommendation T.101 DS II (C0 set
positions 1/8).

A.3.9 General control characters

The function and parameter category 9 contains general control functions which are used
to control the general state of presentation. The meaning of these control characters is very
dependent upon the terminal model and display environment of the terminal data syntax in which
they are used. Transcoding and conversion is required for each of the functions invoked by these
control characters. These control characters have been organized into a number of sub categories
which correspond to the area of functionality being addressed.

General–Control–Characters ::= CHOICE { [1] Other–Format–Effectors,

[2] Lining–Control,

[3] Character–Size–Control,

[4] Flash–Control,

[5] Conceal–Control,

[6] Invert–Control,

[7] Window/Box–Control,

[8] Marking–Control,

Fascicle VII.5 – Rec. T.101 27

[9] Protection–Control,

[10] Display–Control,

[11] Device–Control,

[12] Cursor–Control,

[13] Reset–Control }
This subsection addresses the additional format effector characters which must be

specially handled in conversion between the various data syntaxes.

A repeat function is available in all of the data syntaxes; however, the side effects of the
function differ between the data syntaxes. Terminal data syntax DS I provides a function which
allows the immediately preceding G–set character, or pair of characters in the case of a
composite coded graphic character and non spacing accent character, to be repeated. Both
terminal data syntaxes DS II and DS III restrict the character to a graphic character (i.e. an
alphanumeric text character or mosaic character from the repertoire, or a DRCS character). These
limitations must be considered in establishing the conversion process. Here the repeat function
will be considered to repeat any preceding G–set character and testing must be performed in the
interpretation of the IDS to eliminate any erroneous cases.

The functions hold mosaic and release mosaic occur in only one data syntax and require
special interpretation since analogous functions do not exist directly in any of the terminal data
syntaxes.

A.3.9.1 Other format effectors

Other–Format–Effectors ::= CHOICE { [1] Repeat–N,
[2] Repeat–EOL,
[3] Hold–Mosaic,
[4] Release–Mosaic }

28 Fascicle VII.5 – Rec. T.101

A.3.9.1.1 Repeat–N

Repeat–N ::= SEQUENCE { SID, RPT–Par }

–– Special character indicating the REPEAT Function from Recommendation T.101 DS I
[C1 set position 5/8, (9/8)], DS II [C0 set position 1/2), DS III [C1 set position 4/6,
(8/6)].

RPT–Par ::= INTEGER

–– Count of repetitions.

A.3.9.1.2 Hold mosaic

Repeat–EOL ::= SID

–– Special character indicating the REPEAT TO End Of Line Function from
Recommendation T.101 DS I [C1 set position 5/8, (9/8)] with parameter 0), DS III [C1
set position 4/7, (8/7)].

A.3.9.1.3 Hold mosaic

Hold–Mosaic ::= SID

–– Special character indicating the Hold–Mosaic function (HMS) from Recommendation
T.101 DS II [C1 set (serial) position 5/14, (9/14)].

A.3.9.1.4 Release mosaic

Release–Mosaic ::= SID

–– Special character indicating the Release–Mosaic (RMS) function from Recommendation
T.101 DS II [C1 set (serial) position 5/15, (9/15)].

A.3.9.2 xe ""§Lining control

The lining function permits an underline to be displayed as part of the graphics character
shape for alphanumeric characters from Repertoire 1. This underline is considered as a part of the
character cell image before any rotation operation is applied. In the special case of the display of
mosaic characters, the lining function establishes a “separated mosaic” font. The capability to
handle separated mosaics is available in all of the three terminal data syntaxes; however, the level
of capability differs. In terminal data syntax DS II, only one size of separation for separated
mosaics is directly available. In terminal data syntaxes DS I and DS III the amount of separation
is defined by the line width (drawing point sizexe "drawing point size"§) parameter (logical
pelxe "logical pel"§) in the geometric drawing commands. Basic separated mosaics may be
converted directly between each of the data syntaxes. Since the variation in separation cannot be
achieved directly in one of the terminal data syntax it must be simulated by the use of DRCS. Of
course simulation of separated mosaics in this manner would consume limited DRCS resources
and therefore must consider the boundary condition specification.

Lining–Control ::= INTEGER { start–lining
(1),

stop–lining
(2) }

Fascicle VII.5 – Rec. T.101 29

–– Start–Lining is a function from Recommendation T.101 DS I and II [C1 set position
5/10, (9/10)] and (UNDERLINE START) from DS III [C1 set position 5/9, (9/9)].

–– Stop–Lining is a function from Recommendation T.101 DS I and II [C1 set position 5/9,
(9/9)] and (UNDERLINE STOP) from DS III [C1 set position 5/10, (9/10)].

A.3.9.3 xe ""§Character size control

The various terminal data syntaxes provide the capability to establish a wide range of
character sizes for basic alphanumeric text, mosaics and DRCS characters. In addition, terminal
data syntax DS II provides the capability to separately define completely variable character sizes
for text defined as part of the geometric part of DS II. Since this “geometric text” data is used
only for the annotation of geometric pictures in the optional geometric part of DS II, it is not
necessary to consider it as part of the translation of basic alphanumeric text. DS III, on the other
hand, provides only one form of text. Therefore it is necessary to handle operations such as
dynamic text sizes and rotations as part of the conversion between data syntaxes.

Since the capability to scale text, mosaics and DRCS to arbitrary sizes is not available in
all data syntaxes, there will be some degradation of the displayed image when converted from
one data syntax to another. It is undesirable to lose any textual information in the conversion
process, since this textual information might be of principal importance to the understanding of
the videotex page. Also it is not desirable to arbitrarily wrap or scroll textual information since
this would corrupt mosaic information. In certain situations the conversion process must
automatically choose a smaller size of character cell in order to avoid the loss of information.
The commands for character size control indicate the size of the character cell intended in the
terminal data syntax used to represent the source data. The resultant character cell in the
converted form may be smaller depending upon the capabilities of the target terminal data syntax
and the boundary condition in effect.

Two separate functions exist to define characters of double height. This is due to a
difference in the definition of the relationship of the double height character cell to the location
of the baseline in part of one of the source data syntaxes. Since data syntax DS II provides a
capability to define double height characters which both extend up a double height above the
baseline, and which extend down below the baseline, two functions are provided here. Since the
other two terminal data syntaxes provide only a single double height capability, a conversion
involving a repositioning of the baseline is required.

Character–Size–Control ::= CHOICE { [1] Normal–Size,
[2] Double–Size–Up,
[3] Double–Width,
[4] Double–Height–Up,
[5] Double–Height–Down,
[6] Small–Size,
[7] Medium–Size,
[8] Double–Size–Down }

A.3.9.3.1 Normal size

Normal–Size ::= SID

30 Fascicle VII.5 – Rec. T.101

–– A function from Recommendation T.101 DS I [C1 set position 4/10, (8/10)], from DS II
[C1 set position 4/12, (8/12)] and (NORMAL TEXT) from DS III [C1 set position 4/12,
(8/12)].

–– Note – The “Normal–Size” of text is defined by the boundary conditions of each of the
terminal data syntaxes and is not the same in any of the terminal data syntaxes. Although
the width of the “normal” character cell size is 1/40 of the screen width in DS II and DS
III, the screen width is not exactly the same. The “normal” character cell size in DS I is
by default 1/31 of the width; however, it may be redefined by the DS I P–TEXT
command. Similarly the vertical height of a character cell differs between the various
terminal data syntaxes. This command indicates that the source terminal data syntax
intended to use “normal” size implicit in that terminal data syntax. This will require
conversion to the normal size implicit in that resultant terminal data syntax. The value of
“normal size” should be communicated explicitly in the state vector associated with this
command.

A.3.9.3.2 Double size up

Double–Size–Up
::= SID

–– A function from Recommendation T.101 DS II [C1 set position 4/15, (8/15)], (DOUBLE
SIZE) from DS III [C1 set position 4/15, (8/15)], and (DBS 4/5) from DS I [C1 set
position 4/11, (8/11) followed by parameter 4/5].

–– Note – The character cell width and height are twice that defined by the control
command “Normal–Size”.

A.3.9.3.3 Double width

Double–Width ::= SID

–– A function from Recommendation T.101 DS II [C1 set position 4/14, (8/14)], and (DBW
4/4) from DS I [C1 set position 4/11, (8/11) followed by parameter 4/4].

–– Note – The character cell width is twice that defined by the control command “Normal–
Size”.

A.3.9.3.4 Double height up

Double–Height–Up
::= SID

–– A function from Recommendation T.101 DS II [C1 set position 4/13, (8/13)], (DOUBLE
HEIGHT) from DS III [C1 set position 4/13, (8/13)], and (DBH 4/1) from DS I [C1 set
position 4/11, (8/11) followed by parameter 4/1].

–– Note – The character cell height is twice that defined by the control command “Normal–
Size” and extends up two character cell heights above the baseline.

A.3.9.3.5 Double height down

Double–Height–Down ::= SID

–– A function from Recommendation T.101 DS II [C1 set position 4/13, (8/13)].

Fascicle VII.5 – Rec. T.101 31

–– Note – The character cell height is twice that defined by the control command “Normal–
Size” and the double height character extends one cell height above the baseline and one
cell height below the baseline.

A.3.9.3.6 Small size

Small–Size ::= SID

–– A function from Recommendation T.101 DS I [C1 set position 4/8, (8/8)] and (SMALL
TEXT) from DS III [C1 set position 4/10, (8/10)].

–– Note – The character cell width and height are half that defined by the control command
“Normal–Size”.

A.3.9.3.7 Medium size

Medium–Size ::= SID

–– A function from Recommendation T.101 DS I [C1 set position 4/9, (8/9)] and
(MEDIUM TEXT) from DS III [C1 set position 4/11, (8/11)].

–– Note – The character cell size is defined to be an intermediate size. This intermediate
size is defined by the boundary conditions of each of the source data syntaxes which use
this control function. In data originating from data syntax DS III, medium size is defined
to be 1/32 the normalized width of the display area and 3/64 the height of the normalized
unit area. In data from data syntax DS I, medium text becomes half the character cell
height and the full width defined by the control command “Normal–Size”.

A.3.9.3.8 Double size down

Double–Size–Down
::= SID

–– A function from Recommendation T.101 DS II [C1 set position 4/15, (8/15)].

A.3.9.4 xe ""§Flash control

The operation of the flash capability is dependent on the terminal model of the particular
source data syntax. In a “multi–plane” terminal configuration, character cells may have an
implicit foreground and background which alternate during blinking. In a “single–plane”
terminal configuration, the flash capability is achieved by use of colour mapping operations. It is
possible to convert between these two variants on flashing. In addition to a basic flash capability
driven by control characters, each of the terminal data syntaxes also provides the capability to
establish complex dynamic important to reference the boundary condition imposed by the
number of colours in the colour map and the terminal model plane structure.

Flash–Control ::= SEQUENCE { Flash–Rate, Flash–Mode }

Flash–Rate ::= CHOICE { [1] Flash,
[2] Steady,
[3] Phase1–Flash,
[4] Phase2–Flash,
[5] Phase3–Flash,
[6] Increment–Flash,

32 Fascicle VII.5 – Rec. T.101

[7] Decrement–Flash,
[8] Blink–Stop }

Flash–Mode ::= CHOICE { [1] Normal,
[2] Inverted–Flash,
[3] Reduced–Intensity–Flash }

Fascicle VII.5 – Rec. T.101 33

A.3.9.4.1 Flash

Flash ::= SID

–– A function from Recommendation T.101 DS II [C1 set position 4/8, (8/8)], (FLC 4/0)
from DS I [C1 set position 5/1, (9/1)] followed by parameter 4/0] and (BLINK START)
from DS III [C1 set position 4/14, (8/14)].

–– Note – Establish a 50% cycle flash either from the foreground to the background or
between two colour map addresses chosen implicitly to produce the equivalent effect of
foreground/background flashing. Although the Flash function is similar in the three
source data syntaxes, the rate of flashing is not necessarily the same.

A.3.9.4.2 Steady

Steady ::= SID

–– A function from Recommendation T.101 DS II [C1 set position 4/9, (8/9)], (FLC 4/15)
from DS I [C1 set position 5/1, (9/1)] followed by parameter 4/15].

–– Note – Cancel the application of any flashing attribute.

A.3.9.4.3 Invested flash

Inverted–Flash ::= SID

–– A function from Recommendation T.101 DS II (C1 set position CSI 3/0 4/1), (FLC 4/7)
from DS I [C1 set position 5/1, (9/1)] followed by parameter 4/7].

–– Note – Establish an inverted phase 50% cycle flash from the foreground to the
background.

A.3.9.4.4 Reduced intensity flash

Reduced–Intensity–Flash
::= SID

–– A function from Recommendation T.101 DS II (C1 set position CSI 3/1 4/1), (FLC 4/7)
from DS I [C1 set position 5/1, (9/1)] followed by parameter 4/7].

–– Note – Establish a reduced intensity flash between colour map addresses.

A.3.9.4.5 Phase 1–flash

Phase 1–Flash ::= SID

–– A function from Recommendation T.101 DS II (C1 set position CSI 3/2 4/1), (FLC 4/4)
from DS I [C1 set position 5/1, (9/1)] followed by parameter 4/4].

–– Note – Establish a 33% cycle flash from the foreground to the background beginning on
phase 1.

A.3.9.4.6 Phase 2–flash

Phase 2–Flash ::= SID

34 Fascicle VII.5 – Rec. T.101

–– A function from Recommendation T.101 DS II (C1 set position CSI 3/3 4/1), (FLC 4/2)
from DS I [C1 set position 5/1, (9/1)] followed by parameter 4/2].

–– Note – Establish a 33% cycle flash from the foreground to the background beginning on
phase 2.

A.3.9.4.7 Phase 3–flash

Phase 3–Flash ::= SID

–– A function from Recommendation T.101 DS II (C1 set position CSI 3/4 4/1), (FLC 4/1)
from DS I [C1 set position 5/1, (9/1)] followed by parameter 4/1].

–– Note – Establish a 33% cycle flash from the foreground to the background beginning on
phase 3.

A.3.9.4.8 Increment flash

Increment–Flash ::= SID

–– A function from Recommendation T.101 DS II (C1 set position CSI 3/5 4/1).

–– Note – Establish a 33% cycle flash from the foreground to the background incrementing
the phase reference.

A.3.9.4.9 Decrement flash

Decrement–Flash ::= SID

–– A function from Recommendation T.101 DS II (C1 set position CSI 3/6 4/1).

–– Note – Establish a 33% cycle flash from the foreground to the background incrementing
the phase reference.

A.3.9.4.10 Blink stop

Blink–Stop ::= SID

–– A function from Recommendation T.101 DS III [C1 set position 5/14, (9/14)].

–– Note – Stop all blink processes.

A.3.9.5 xe ""§Conceal control

Fascicle VII.5 – Rec. T.101 35

The conceal display function is intended for operation on a terminal model which
supports multiple independent planes. Data stored in character cells may be marked as concealed,
in which case the background of the character cell will display in the same colour as the
background of the cell. A local reveal command would cause the foreground to be displayed in
the originally defined colours. A conversion is necessary to handle this function on a single plane
terminal. The capability may be simulated either by the use of a key activated macro which
contains a definition of the foreground of the concealed character cells or it may be simulated by
the colour map. The definition of the key activated macro sequence must be established during a
sorting process in the conversion procedure and is limited by the availability of macro memory.
Use of the colour map for the simulation of this function consumes colour map resources very
quickly. Therefore the handling of the conceal function should be the lowest priority in using
colour map resources. The conceal and stop conceal control functions are included here so that
they may be handled in the most effective manner by the conversion process.

Conceal–Control ::= CHOICE { [1] Conceal–Display,
[2] Stop–Conceal–Display }

A.3.9.5.1 Conceal display

Conceal–Display ::= SID

–– A function from Recommendation T.101 DS II [C1 set position 5/8, (9/8)] and DS I [C1
set position 5/2, (9/2)] followed by parameter 4/0].

–– Note – Establish a Conceal state attribute.

A.3.9.5.2 Stop conceal display

Stop–Conceal–Display ::= SID

–– A function from Recommendation T.101 DS II (C1 set position CSI 4/2) and DS I [C1
set position 5/2, (9/2) followed by parameter 4/15].

–– Note – Stop applying Conceal state attribute.

A.3.9.6 Invert control

Invert–Control ::= CHOICE { [1] Invert–Polarity,
[2] Normal–Polarity }

–– Note – Invert the application of the foreground and background colour attributes in a
multi–plane terminal model environment and invert the overlaying (foreground) and
underlaying (background) colours in a single plane terminal environment. These
commands have essentially the same effect when generating a presentation in each of the
identified terminal model environments; however, there is a great difference in the effect
when this command is used to change the attributes of an already displayed graphic
character. This must be handled in the conversion by the process which converts the
effects of different planes of the terminal model.

A.3.9.6.1 Invert polarity

Invert–Polarity ::= SID

–– A function from Recommendation T.101 DS II [C1 set position 5/12, (9/12)] and
(REVERSE VIDEO) DS III [C1 set position 4/8, (8/8)].

36 Fascicle VII.5 – Rec. T.101

–– Note – Establishes Invert Polarity attribute.

A.3.9.6.2 Normal polarity

Normal–Polarity ::= SID

–– A function from Recommendation T.101 DS II [C1 set position 5/13, (9/13)] and
(NORMAL VIDEO) DS III [C1 set position 4/9, (8/9)].

–– Note – Establishes Normal Polarity attribute.

A.3.9.7 xe ""§Window/box control

The window/box capability establishes a special background colour for a character cell
which is transparent to a video image which may underlay the display. This capability is
provided directly by two control commands in one of the source terminal data syntaxes. The
same capability is provided in a more complex manner in all of the data syntaxes by the
establishment of a special transparent colour which may be used together with other presentation
commands.

Window/Box–Control ::= INTEGER { start–box
(1),

end–box
(2) }

–– Start–Box is a function from Recommendation T.101 DS II [C1 set position 4/10,
(8/10)].

–– Note – Establish the Boxing attribute.

–– End–Box is a function from Recommendation T.101 DS II [C1 set position 4/11, (8/11)].

–– Note – Stop applying the Boxing attribute.

A.3.9.8 xe ""§Marking control

The marking control capability marks character cell locations for further action. This
function depends upon the availability of a character cell–oriented memory in the terminal
model. It cannot be converted to other data syntaxes.

Marking–Control
::= INTEGER { marked–mode–start

(1),
marked–mode–stop

(2) }
–– Marked–Mode–Start is a function from Recommendation T.101 DS II (C1 set position

CSI 3/0 5/3, CSI 3/1 5/3 or CSI 3/2 5/3).

–– Note – Apply the Marking attribute.

–– Marked–Mode–Stop is a function from Recommendation T.101 DS II (C1 set position
CSI 3/0 5/4, CSI 3/1 5/4 or CSI 3/2 5/4).

–– Note – Stop applying Marking attribute.

A.3.9.9 xe ""§Protection control

Fascicle VII.5 – Rec. T.101 37

The manner in which selective input control is handled in the three source terminal data
syntaxes differs greatly. Not only are the procedures different but the input processes are
bounded by different boundary conditions. For example, in one case input is associated with the
character cell memory of the multi–plane terminal model, whereas in another case, such input
data is bounded by a storage limit on the number and cumulative size of such input fields. Since
such input processes are fundamentally different, the commands which control them are included
here separately. This will permit the conversion process to simulate one set of functions in a
different terminal environment.

Protection–Control ::= INTEGER { unprotect–field
(1),

protect–field
(2),

protect–mode–start
(3),

protect–mode–cancel
(4),

protect–mode–idle
(5),

unprotect–block
(6),

protect–block
(7) }

–– Unprotect–Field is a function from Recommendation T.101 DS III [C1 set position 5/15,
(9/15)].

–– Note – Unprotect a given area of the display screen, defined by the FIELD geometric
command, to allow the input of characters into the unprotected field buffer when the
cursor is in the unprotected area.

–– Protect–Field is a function from Recommendation T.101 DS III [C1 set position 5/0,
(9/0)].

–– Note – Protect a given area of the display screen to prevent the input of characters into
the unprotected field buffer when the cursor is in the unprotected area. The entire screen
area is protected by default.

–– Protect–Mode–Start is a function from Recommendation T.101 DS II (C1 set position
CSI 3/0 5/0, CSI 3/1 5/0 or CSI 3/2 5/0).

–– Note – Apply the protected attribute to character cell positions preventing overwriting.

–– Protect–Mode–Cancel is a function from Recommendation T.101 DS II (C1 set position
CSI 3/0 5/1, CSI 3/1 5/1 or CSI 3/2 5/1).

38 Fascicle VII.5 – Rec. T.101

–– Note – Cancel the protected attribute to character cell positions allowing overwriting.

–– Protect–Mode–Idle is a function from Recommendation T.101 DS II (C1 set position
CSI 3/2 5/2).

–– Note – Stop the application of the protect mode attribute.

–– Unprotect–Block is a function from Recommendation T.101 DS I [C1 set position 5/14,
(9/14)].

–– Note – Remove protection of character cell positions against alteration.

–– Protect–Block is a function from Recommendation T.101 DS I [C1 set position 5/15,
(9/15)].

–– Note – Protect character cell positions against alteration.

A.3.9.10 xe ""§Display control

The display control subcategory of commands contains functions which affect the
manner in which the display device presents information. This includes configuration of the
display memory available in a particular terminal model, includes whether the contents of that
display memory is to be scrolled, and includes the overwriting of information in the display
memory.

Display–Control ::= CHOICE { [1] Plane–Configuration–Control,
[2] Scroll–Control,
[3] Overwrite–Mode }

The terminal models used in each of the three terminal data syntaxes differ significantly
from one another. In two of the cases the terminal model structures are fixed. In the case of data
syntax DS I the terminal model structure can be altered dynamically. The amount of display
memory assigned to each display plane and the presentation (overlay) order of the planes may be
altered. These functions are highly dependent upon the display hardware used to realize the
particular display model which underlies data syntax DS I and the dynamic effects which may be
generated using these functions cannot be converted to either of the other data syntaxes. However
these comamnds must be interpreted by the conversion process in order to establish the criteria
for sorting other display information to achieve the mapping from the data syntax DS I multi
plane terminal model to the different data syntax DS II multi–plane terminal model or to the data
syntax DS III single plane terminal model.

A.3.9.10.1 Plane configuration control

Plane–Configuration–Control ::= CHOICE { [1] Frame–Area,

[2] Set–Frame,

[3] Assign–Frame,

[4] Header–Area,

[5] Body–Area }
A.3.9.10.1.1 Frame area

Fascicle VII.5 – Rec. T.101 39

Frame–Area ::= SEQUENCE { Area–Origin, Area–Dimensions }

–– The Frame Area Function is from Recommendation T.101 DS I [Display Control
command set position 2/5, (10/5)].

–– Note – The Display Control Command G Set has final character 3/8 within DS I.

Area–Origin ::= SEQUENCE { REAL, REAL }

–– Specification of the origin of the Frame Area.

Area–Dimensions
::= SEQUENCE { REAL, REAL }

–– Specification of the dimensions of the Frame Area.

–– Coordinates are specified as normalized fractions of the unit screen area represented in a
signed integer field with an implied binary point in the most significant place.

A.3.9.10.1.2 Set frame

Set–Frame ::= SEQUENCE OF { Set–Frame–Index,
Set–Frame–Memory–Assignment }

–– The Frame Area Function is from Recommendation T.101 DS I [Display Control
command set position 2/6, (10/6)].

Set–Frame–Index
::= INTEGER

–– Frame Area Index.

Set–Frame–Dimensions
::= INTEGER

–– Number of bits of raster memory allocated to the frame.

A.3.9.10.1.3 Assign frame

Assign–Frame
::= INTEGER

–– A function from Recommendation T.101 DS I [Display Control command set position
2/7, (10/7)].

A.3.9.10.1.4 xe ""§Header area

Some of the terminal oriented Videotex data syntaxes provide a capability to present
information in a special message area as well as in the main display area. This message area
would contain service oriented messages. The content of these messages would doubtless change
in international interworking between Videotex systems. Data syntax DS I provides special
commands which control this message header. In DS I the raster and header raster commands
control the display of presentation information in the main display area or the header message
area. The raster commands also establish the initial colour values in data syntax DS I. These
commands are included here so that header information can be identified and properly converted.

40 Fascicle VII.5 – Rec. T.101

Header–Area
::= SEQUENCE { Raster–Colour–Value }

–– A function from Recommendation T.101 DS I [Display Control command set position
3/9, (11/9)].

–– Note – The Display Control Command G Set has final character 3/8 within DS I.

Raster–Colour–Values
::= SEQUENCE { INTEGER, INTEGER, INTEGER }

–– Specification of the initial raster header colour for Green, Red, and Blue respectively.

–– Colour values are specified as normalized fractions of the unit range of colours
represented in a signed integer field with an implied binary point in the most significant
place.

A.3.9.10.1.5 Body area

Body–Area ::= SEQUENCE { Body–Opcode, Raster–Colour–Values }

–– A function from Recommendation T.101 DS I [Display Control command set position
3/8, (11/8)].

A.3.9.10.2 xe ""§Scroll control

Scrolling may occur on a whole screen basis or on a partial screen basis. There is a major
difference between scrolling on a multi–plane terminal model and on a single plane terminal
model. As well the assignment of functions to the various planes in a multi–plane terminal model
also makes a tremendous difference to the result of scrolling. In some cases the underlying
graphics information moves with the scrolling characters and in other cases it remains in place.
In DS I the multi–plane motion capability permits dynamic motions and plane assignments which
greatly affect how scrolling operates. In general it is not possible to convert all dynamic
operations such as scrolling between terminal data syntaxes; however, the results of scrolling
affects the final presentation. The conversion process must buffer data and post–process it so that
the final image is correct. Since the scroll operations in each of the three terminal data syntaxes
are fundamentally different, they are all included here so that the conversion process can handle
them.

Scroll–Control ::= CHOICE { scroll–on
[1] NULL,

scroll–off
[2] NULL,

scroll–up
[3] NULL,

scroll–down
[4] NULL,

activate–implicit–scrolling
[5] NULL,

deactivate–implicit–scrolling
[6] NULL,

Fascicle VII.5 – Rec. T.101 41

create–scroll–area
[7] Create–Scroll–Area,

delete–scroll–area
[8] Delete–Scroll–Area,

scroll–display–mode–on
[9] NULL,

scroll–display–mode–off
[10] NULL }

–– Scroll–On is a function from Recommendation T.101 DS III [C1 set position 5/7, (9/7)].

–– Note – Enable single plane scroll within an active display Field.

–– Scroll–Off is a function from Recommendation T.101 DS III [C1 set position 5/8, (9/8)].

–– Note – Disable single plane scroll.

–– Scroll–Up is a function from Recommendation T.101 DS II (C1 set position CSI 3/0
6/0).

–– Note – Cause the scrolling area to scroll up.

–– Scroll–Down is a function from Recommendation T.101 DS II (C1 set position CSI 3/1
6/0).

–– Note – Cause the scrolling area to scroll down.

–– Activate–Implicit–Scrolling is a function from Recommendation T.101 DS II (C1 set
position CSI 3/2 6/0).

–– Note – Cause the scrolling area to scroll implicitly on encountering scroll area boundary.

–– Deactivate–Implicit–Scrolling is a function from Recommendation T.101 DS II (C1 set
position CSI 3/3 6/0).

–– Note – Cause the scrolling area not to scroll implicitly.

–– Scroll–Display–Mode–On is a function from Recommendation T.101 DS I (Display
Control Command G Set position 2/4 with parameter b6 = 1).

–– Note – The Display Control Command G Set has final character 3/8 within DS I.

–– Note – Establish the Scroll attribute of the Display Mode.

–– Scroll–Display–Mode–Off is a function from Recommendation T.101 DS I (Display
Control Command G Set position 2/4 with parameter b6 = 0).

–– Note – Disable the Scroll attribute of the Display Mode.

A.3.9.10.2.1 Create scroll area

Create–Scroll–Area ::= SEQUENCE { Upper–Par, Lower–Par }

–– A function from Recommendation T.101 DS II (5/5).

–– Note – Create a scrolling area.

Upper–Par ::= SEQUENCE { INTEGER, INTEGER, INTEGER }

42 Fascicle VII.5 – Rec. T.101

–– Parameters <URH> <URT> <URU> defining the upper boundary row of the scrolling
area.

Lower–Par ::= SEQUENCE { INTEGER, INTEGER, INTEGER }

–– Parameters <LRH> <LRT> <LRU> defining the lower boundary row of the scrolling
area.

A.3.9.10.2.2 Delete scroll area

Delete–Scroll–Area ::= SEQUENCE { Upper–Par, Lower–Par }

–– A function from Recommendation T.101 DS II (5/6).

–– Note – Delete a scrolling area.

Fascicle VII.5 – Rec. T.101 43

A.3.9.10.3 xe ""§Overwrite mode

In conjunction with control over the terminal model memory configuration, one of the
terminal data syntaxes provides a unique capability of controlling how data builds up in a
particular display plane. Data syntax DS I allows the overwriting of memory to be dependent
upon the current contents of memory. The new data may either replace the old contents of
memory, or perform a logical “OR”, logical “AND”, or logical “XOR” (eXclusive OR) with the
old contents of the memory before replacing it. This function is extremely difficult to simulate in
either of the other two data syntaxes in the general case since it requires operations at the bit
level within a particular terminal model dependent memory. It is included here so that the
conversion process can perform the best simulation possible.

Overwrite–Mode ::= SEQUENCE { Overwrite–Par }

–– A function from Recommendation T.101 DS I (Display Control Command G Set
position 2/4).

–– Note – The Display Control Command G Set has final character 3/8 within DS I.

Overwrite–Par ::= INTEGER { replace
(1),

or
(2),

and
(3),

xor
(4) }

A.3.9.11 xe ""§Device control

Except for the display device on or off commands, the device–control commands control
other than presentation display functions and are outside the scope of the interworking data
syntax.

Device–Control ::= INTEGER { display–device–on
(1),

display–device–off
(2) }

–– Display–Device–On is a function from Recommendation T.101 DS II (Control Sequence
ESC 3/12).

–– Display–Device–Off is a function from Recommendation T.101 DS II (Control
Sequence ESC 3/13).

A.3.9.12 xe ""§Cursor control

The display cursor is controlled explicitly in each of the terminal data syntaxes as well as
implicitly in one. In addition the explicit cursor control commands do not have the same coding
in any of the terminal data syntaxes. In the implicit case of cursor control, the display cursor is
controlled by the unprotected field protect mode control in terminal data syntax DS III.
Conversion is required between each of these control functions.

44 Fascicle VII.5 – Rec. T.101

Cursor–Control ::= CHOICE { Cursor–On
(1),

Cursor–Flash
(2),

Cursor–Off
(3) }

A.3.9.12.1 Cursor–on

Cursor–On ::= SID

–– A function from Recommendation T.101 DS II (C0 set position 1/1), DS I [C1 set
position 4/14, (8/14)] and (CURSOR STEADY) from DS III [C1 set position 5/12,
(9/12)].

A.3.9.12.2 Cursor flash

Cursor–Flash ::= SID

–– A function from Recommendation T.101 DS III [C1 set position 5/11, (9/11)].

A.3.9.12.3 Cursor–off

Cursor–Off ::= SID

–– A function from Recommendation T.101 DS II (C0 set position 1/14), DS I [C1 set
position 4/15, (8/15)] and (CURSOR OFF) from DS III [C1 set position 5/13, (9/13)].

Fascicle VII.5 – Rec. T.101 45

A.3.9.13 xe ""§Reset control

Each of the source Videotex data syntaxes provides the capability to reset the states of
the display environment supporting that particular data syntax to a predefined set of values. The
parameters which may be altered by the various reset functions in the different source data
syntaxes are quite different. Some of the reset functions provide the capability to reset particular
parameters selectively while others reset a data syntax dependent predefined list of parameters.
The interworking data syntax must support reset functions in two different ways. Firstly an
indication of the particular reset command must be communicated as a syntactic element within
the IDS. The various reset functions are included here so that the presentation affect of the reset
function may be effected in the conversion. Secondly a reset function greatly effects the global
presentation states. These states are kept track of in the conversion process so that the conversion
process need not understand the interrelationship between presentation commands. This means
that the conversion process does not have to simulate a terminal of the source data syntax in
order to handle the conversion of its elements. Therefore along with an IDS reset control
command it is necessary to include a special form of the state vector which re–establishes the
global variables.

Reset–Control ::= CHOICE { [1] Reset–Type–I,
[2] Reset–Type–II,
[3] Reset–Type–III }

A.3.9.13.1 Reset type–I

Reset–Type–I ::= SEQUENCE { P–Reset–Par OPTIONAL }

–– A function from Recommendation T.101 DS I [Display Control Command G Set
position 2/1, (10/1)].

–– Note – The Display Control Command G Set has final character 3/8 within DS I.

A.3.9.13.1.1 P–reset par

P–Reset–Par ::= SEQUENCE { macro–reset BOOLEAN,
blink–reset BOOLEAN,
lut–reset BOOLEAN,
screen–reset BOOLEAN }

–– Selectively reset the identified parameters.

–– Note – Data Syntax DS I also includes the NSR reset function which is identified
separately above.

A.3.9.13.2 Reset type–II

Reset–Type–II ::= SEQUENCE { US–Reset–Operation,
US–Reset–Parameter }

–– A function from Recommendation T.101 DS II (C0 set position 1/15) followed by fixed
character 2/15.

A.3.9.13.2.1 US–reset operation

US–Reset–Operation ::= CHOICE { us–reset–mosaic–1
[1] NULL,

46 Fascicle VII.5 – Rec. T.101

us–reset–mosaic–2
[2] NULL,

us–reset–mosaic–1–limited
[3] NULL,

 us–reset–mosaic–2–limited
[4] NULL,

us–reset–service–break
[5] US–Reset–Service–Break,

us–reset–to–previous–state
[6] NULL }

–– US–Reset–Mosaic–1 is represented by US Reset Identifier Character (4/1), and resets to
defaults and invokes serial C1 set.

–– US–Reset–Mosaic–2 is represented by US Reset Identifier Character (4/2), and resets to
defaults and invokes parallel C1 set.

–– US–Reset–Mosaic–1–Limited is represented by US Reset Identifier Character (4/3), and
resets to limited defaults and invokes parallel C1 set.

–– US–Reset–Mosaic–2–Limited is represented by US Reset Identifier Character (4/4), and
resets to limited defaults and invokes parallel C1 set.

–– US–Reset–to–Previous–State is represented by US Reset Identifier Character (4/15), and
resets to previous state after a reset to service break.

A.3.9.13.2.2 US–reset service break

US–Reset–Service–Break ::= SEQUENCE { INTEGER { break–to–row–serial (1),
break–to–row–parallel (2) }, row–designator }

–– Break–to–Row–Serial is represented by US Reset Identifier Character (4/0), and service
breaks to row serial C1 set.

–– Break–to–Row–Parallel is represented by US Reset Identifier Character (4/5), and
service breaks to row parallel C1 set.

–– Row–Designator is represented by US Reset Row Designator Parameter Character,
where the designated row is coded from columns 4 to 7 of the code table. The row
number is indicated by the binary value of the 6 least significants bits.

A.3.9.13.3 Reset type–III

Reset–Type–III ::= SEQUENCE { [1] Reset–Par1 OPTIONAL,
 [2] Reset–Par2 OPTIONAL }

–– A function from Recommendation T.101 DS III [PD1 G Set position 2/0, (10/0)].

Reset–Par1 ::= SEQUENCE { INTEGER {

colour–mode–1
(1),

colour–mode–2
(2),

Fascicle VII.5 – Rec. T.101 47

colour–mode–3
(3), }

{INTEGER {

display–to–nominal–black
(1),

display–to–current–colour
(2),

border–to–nominal–black
(3),

border–to–current–colour
(4),

display–and–border–to–current–colour
(5),

display–to–current–colour–and–border

–to–nominal–black
(6),

display–and–border–to–nominal–black
(7) },

domain BOOLEAN }
Reset–Par2 ::= SEQUENCE {

drcs–reset BOOLEAN,
macro–pdi–reset BOOLEAN,
texture–reset BOOLEAN,
unprotected–field–reset BOOLEAN,
blink–pdi–reset BOOLEAN,
text–pdi–reset BOOLEAN }

–– Selectively reset the identified parameters.

–– Note – Data Syntax DS III also includes the NSR reset function which is identified
separately above.

A.3.10 xe ""§Geometric string

48 Fascicle VII.5 – Rec. T.101

All of the source terminal data syntaxes provide a geometric capability, however the
capabilities available in each of the geometric systems is quite different. The interworking data
syntax groups the common geometric commands together. Recommendation F.300 has identified
the various categories into which geometric functions may be organized. These categories are
used below. The IDS uses normalized coordinates for all geometric commands. Also the IDS
uses relative coordinate specifications for all lists of coordinates, except for the set–position and
marker–point commands which are absolute. However, in certain cases there may be a choice of
either absolute or relative coordinates. All other forms of coordinates used within any of the
terminal oriented data syntaxes, such as the general use of absolute or incremental, will be
converted to the forms indicated above.

Geometric–String
::= CHOICE { [1] Geometric–Drawing–Command,

[2] Geometric–Control–Command }

Fascicle VII.5 – Rec. T.101 49

A.3.10.1 Geometric drawing command

Geometric–Drawing–Command ::= CHOICE { [1] Marker–Point,
[2] Line,
[3] Arc–Circle,
[4] Rectangle,
[5] Polygon,
[6] Spline,
[7] Pixel–Array }

Some of the source terminal data syntaxes provide a method of optionally carrying on
from one primitive to another in a relative manner. This provides a level of efficiency in certain
situations, however the multiplicity of equivalent formats would make the interworking data
syntax more complex. Therefore the interworking data syntax requires the specification of the
initial position of a drawing command as part of the string of parameters for each command. In
some situations in converting from data syntaxes which permit the relative association of
commands it will be necessary for the conversion process to calculate the current position in
effect at the beginning of a command and include that data as part of the parameter string. There
is no direct equivalent in the IDS of the data syntaxes I and III set position command. This
information is carried as the initial parameter of each of the other drawing commands.

A.3.10.1.1 xe ""§Marker point

The various terminal data syntaxes differ in their capability to present a marker shape at
a point. Data syntaxes DS I and DS III provide only the capability to draw a dot, whereas data
syntax DS II also provides the capability to draw a marker shape at a specific point. The
conversion process can easily simulate the marker point functionality in converting to data syntax
DS I or DS III by the use of more than one presentation function, possibly included in a MACRO
command for efficiency. The dot–point or shape–point command is identified by the context tag
in the CHOICE statement. The shape of the shape point (marker) is defined by a geometric
control command.

Marker–Point ::= CHOICE { [1] Dot–Point,
[2] Shape–Point }

Dot–Point ::= SEQUENCE OF { Abs–Coord }

–– This command carries the functionality of the Data Syntax I, and III SET POINT
command and of the Data Syntax II POLYMARKER command, with the marker the
shape of a dot.

Shape–Point ::= SEQUENCE OF { Abs–Coord }

–– This command carries the functionality of the Data Syntax II POLYMARKER command
with a general marker shape.

A.3.10.1.2 Line

All of the terminal data syntaxes provide the capability to draw a single or a series of
lines. Minor differences exist with respect to the manner in which boundary conditions are
handled, however in general a direct conversion is possible.

Line ::= SEQUENCE OF { Abs–Coord, SEQUENCE OF { Rel–Coord }

50 Fascicle VII.5 – Rec. T.101

–– This command carries the functionality of the Data Syntax I, and III LINE command and
of the Data Syntax II POLYLINE command.

A.3.10.1.3 xe ""§Arc–circle

The capability to draw an arc or a circle differs somewhat between the various data
syntaxes. In each of the various data syntaxes the circle/arc function has been optimized to such
an extent that it provides an efficient manner of communicating arc or circle information in the
context of that data syntax. The interworking data syntax is less concerned about efficiency that
it is about carrying sufficient information to permit conversion to take place. Therefore alternate
ways of carrying the same parameters will not be addressed by the IDS, however the IDS will
include all the functions available in the circle–arc capability in the various data syntaxes.

Arc–Circle ::= CHOICE { [1] Circle,

[2] Arc–3–Point,

[3] Arc–3–Point–Chord,

[4] Arc–3–Point–Pie,

[5] Ellipse,

[6] Elliptic–Arc,

[7] Elliptic–Arc–Chord,

[8] Elliptic–Arc–Pie,

[9] Arc–Centre–Cord,

[10] Arc–Centre–Pie }
A.3.10.1.3.1 Circle

Circle ::= SEQUENCE { Abs–Coord, Coord }

–– This command carries the functionality of the Data Syntax I, and III ARC command
(circle form) and of the Data Syntax II GDP (circle) command.

–– The absolute coordinate defines the initial position of the circle. The other coordinate
defines the diameter of the circle by specifying a point on the opposite side.

A.3.10.1.3.2 Arc–3 point

Arc–3–Point ::= SEQUENCE { Abs–Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax I, and III ARC command
(outline form) and of the Data Syntax II GDP (circular arc 3 point) command.

–– The absolute coordinate defines the initial position of the arc. The two other coordinate
parameters define a point on the arc and the final position of the arc respectively.

Fascicle VII.5 – Rec. T.101 51

A.3.10.1.3.3 Arc–3 point chord

Arc–3–Point–Chord ::= SEQUENCE { Abs–Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax I, and III ARC command
(chord fill form) and of the Data Syntax II GDP (circular arc 3 point chord) command.

–– The absolute coordinate defines the initial position of the arc. The two other coordinate
parameters define a point on the arc and the final position of the arc respectively. A
Chord is drawn from the initial to the final position of the arc.

A.3.10.1.3.4 Arc–3 point pie

Arc–3–Point–Pie ::= SEQUENCE { Abs–Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax II GDP (circular arc 3 point
pie) command.

–– The absolute coordinate defines the initial position of the arc. The two other coordinate
parameters define a point on the arc and the final position of the arc respectively. Two
lines are drawn from the initial to the geometric centre of the arc and then to the final
position of the arc to form a pie shape. Although a pie filled arc is not directly available
in data syntax DS I or DS III the conversion process can simulate the function by the use
of an arc and two lines.

A.3.10.1.3.5 Ellipse

Ellipse ::= SEQUENCE { Abs–Coord, Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax II GDP (ellipse) command.

–– The absolute coordinate defines the initial position of the ellipse. A second coordinate
parameters defines a point on the opposite side of the arc which establishes the major
axis diameter. The third and fourth parameters define the minor axis diameter. Although
an ellipse or elliptic arc are not directly available in data syntax DS I or DS III the
conversion process can simulate the function in a piecewise manner or by fitting a spline
curve.

A.3.10.1.3.6 Elliptic arc

Elliptic–Arc::= SEQUENCE { Abs–Coord, Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax II GDP (elliptic arc)
command.

–– The absolute coordinate defines the initial position of the arc. A second coordinate
parameters defines a point on the opposite side of the arc which establishes the major
axis diameter. A third parameter defines the minor axis diameter. A fourth parameter
defines the final position of the arc.

52 Fascicle VII.5 – Rec. T.101

A.3.10.1.3.7 Elliptic arc chord

Elliptic–Arc–Chord ::= SEQUENCE { Abs–Coord, Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax II GDP (elliptic arc chord)
command.

–– The absolute coordinate defines the initial position of the arc. A second coordinate
parameters defines a point on the opposite side of the arc which establishes the major
axis diameter. A third parameter defines the minor axis diameter. A fourth parameter
defines the final position of the arc. A Chord is drawn from the initial to the final
position of the arc.

A.3.10.1.3.8 Elliptic arc pie

Elliptic–Arc–Pie ::= SEQUENCE { Abs–Coord, Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax II GDP (elliptic arc pie)
command.

–– The absolute coordinate defines the initial position of the arc. A second coordinate
parameters defines a point on the opposite side of the arc which establishes the major
axis diameter. A third parameter defines the minor axis diameter. A fourth parameter
defines the final position of the arc. Two lines are drawn from the initial to the geometric
centre of the arc and then to the final position of the arc to form a pie shape.

A.3.10.1.3.9 Arc centre cord

Arc–Centre–Chord ::= SEQUENCE { Abs–Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax II GDP (arc–centre–chord)
command.

–– The absolute coordinate defines the initial position of the arc. The other coordinate
parameters define the start and end points of the arc.

A.3.10.1.3.10 Arc centre pie

Arc–Centre–Pie ::= SEQUENCE { Abs–Coord, Coord, Coord }

–– This command carries the functionality of the Data Syntax II GDP (arc–centre–pie)
command.

–– The absolute coordinate defines the centre of the arc. The other coordinate parameters
define the start and end points of the arc.

A.3.10.1.4 Rectangle

Rectangle ::= SEQUENCE { Abs–Coord, Rel–Coord }

–– This command carries the functionality of the Data Syntax I and III RECTANGLE
command and the Data Syntax II GDP (rectangle) command.

–– The absolute coordinate defines the initial position of the rectangle. A relative coordinate
parameters defines a point on the diagonally opposite side of the rectangle which
establishes the size of the rectangle.

Fascicle VII.5 – Rec. T.101 53

A.3.10.1.5 Polygon

Polygon ::= SEQUENCE { Abs–Coord, SEQUENCE OF { Rel–Coord } }

–– This command carries the functionality of the Data Syntax I and III POLYGON (filled)
command and the Data Syntax II FILL AREA command. Data Syntax I and III also
provide a POLYGON (outline) command which can be carried through the IDS by a
LINE command with a repetition of the initial points as the final point.

–– The absolute coordinate defines the initial position of the polygon. The sequence of
relative coordinate define the vertices of the polygon. A polygon is always closed and
the final position is the same as the initial position.

A.3.10.1.6 Spline

Spline ::= SEQUENCE { Abs–Coord, SEQUENCE OF { Rel–Coord } }

–– This command carries the functionality of the Data Syntax I and III ARC (spline)
command and the Data Syntax II GDP (spline) command.

–– The absolute coordinate defines the initial position of the poly curve. The sequence of
relative coordinates (greater than 3) define the curve.

–– Note – The various terminal data syntaxes do not use exactly the same definition of the
type and/or parameters for the spline generating function, however all of the source
terminal data syntaxes tend to use a spline function of some type. Although potentially
this could cause significant diferences in the resultant picture after conversion, it is still
the closest result than can be generated in a reasonable manner.

A.3.10.1.7 Pixel array

Pixel–Array::= SEQUENCE {
first–point Abs–Coord,
second–point Abs–Coord,
third–point Rel–Coord,

–– these 3 points define the pixel area which in general could be a parallelogram. The first
two points are the end points of a diagonal.

cells–first–direction INTEGER,

cells–second–direction INTEGER,
–– These values divide the pixel area in a grid with equal dimensions, to represent the

intended (logical) resolution. The first direction is considered from the first to the third
point. The second direction is from the first point to the unspecified point. These values
can easily be derived, e.g. from the logical pel in case of INCREMENTAL POINT.

Pixel–Array–Data }

Pixel–Array–Data ::= CHOICE { [1] IMPLICIT SEQUENCE OF Basic–Colour–Selection,
[2] IMPLICIT SEQUENCE OF Direct–Colour–Selection,
[3] IMPLICIT SEQUENCE OF Indexed–Colour–Selection }

54 Fascicle VII.5 – Rec. T.101

–– The colour list is defined according to the `Colour–Control–String`. Auxiliary colour
selection is not meaningful for this definition. The first colour is mapped to the cell
associated with the first point. The colour elements are mapped within rows running
from the first to the third point, and with rows incrementing in order from the third to the
second point.

The various source terminal Videotex data syntaxes contain commands to efficiently
code line and polygon data in an incremental fashion to achieve greater efficiency. The
incremental capability differs greatly between the different data syntaxes, and no
intermediate format could be developed which would be suitable in all the different
environments. Since efficiency is of secondary importance, incremental lines and
polygons should be communicated in terms of the general line and polygon functions
above.

A.3.10.2 xe ""§Geometric control commands

A large number of control commands are available in each of the terminal data syntaxes
to control the geometric drawing functions. Although many of the geometric control commands
defined in each of the data syntaxes may appear to be the same, they differ in side effect. For this
reason all of the geometric control commands which appear in the various data syntaxes are
included here. Only where the control commands are identical, such as a number of the
geometric control commands in data syntaxes DS I and DS III, is a common control command
definition used below.

Geometric–Control–Command
::= CHOICE { [1] Geo–Control–Command–1,

[2] Geo–Control–Command–2 }
–– Two types of geometric control commands are included in the IDS in order to

accommodate the two different approaches taken in Data Syntax II and in Data Syntax I,
III. These commands are grouped separately since they would never be received in
combination.

A.3.10.2.1 Geo control command–1

Geometric–Control–Command–1 ::= CHOICE { [1] Numeric–Precision,
[2] Drawing–Point–Size,
[3] Line–Style,
[4] Highlight,
[5] Fill,
[6] Field,
[7] Blink–Process,
[8] Wait }

–– Geometric control commands analogous to those in Data Syntax I and III.

A.3.10.2.1.1 Numeric precision

Numeric–Precision ::= SEQUENCE { REAL, REAL }

–– This command carries the functionality of the Data Syntax I, and III DOMAIN
geometric control command.

Fascicle VII.5 – Rec. T.101 55

–– Define the nominal numeric precision in use by the source data syntax. Since the ASN.1
encoding rules permit any precision of data to be communicated, this control command
does not affect the precision of data communicated. It is used to inform the conversion
process of the nominal precision being used by the source data syntax. The first
parameter carries the precision, expressed as a number of significant bits, for single–
value operands. Similarly the second parameter carries the number of significant bits for
multi–valued (2d and 3d) operands.

A.3.10.2.1.2 Drawing point size

Drawing–Point–Size
::= Rel–Coord

–– This command carries the functionality of the Data Syntax I, and III DOMAIN (logical
pel size) geometric control command.

–– This geometric control function establishes the size of the logical drawing point
(LOGICAL PEL) as a fraction of the unit screen dimensions. The special case of zero is
interpreted as being the smallest size possible on a given presentation device.

A.3.10.2.1.3 Line style

Line–Style ::= INTEGER { solid
(1),

dotted
(2),

dashed
(3),

dot–dashed
(4) }

–– Establish the style for presenting lines from a fixed set of line styles.

–– This command carries the functionality of the Data Syntax I, and III TEXTURE (line
texture) geometric control command.

A.3.10.2.1.4 Highlight

Highlight ::= BOOLEAN

–– Establish whether filled areas are drawn in highlight mode, in which the perimeter is
drawn in BLACK or a contrasting colour to the fill.

–– This command carries the functionality of the Data Syntax I, and III TEXTURE
(highlight) geometric control command.

A.3.10.2.1.5 Fill

Fill ::= BOOLEAN

56 Fascicle VII.5 – Rec. T.101

–– Establish whether polygons, closed arcs, ellipses or rectangles are to be filled. For
efficiency this control is codes as part of the opcode identifying the drawing primitive in
some of the source terminal data syntaxes. This function has been separated here in order
to ease conversion between data syntaxes.

–– This command carries the functionality of the Data Syntax I, and III TEXTURE (fill
texture pattern) geometric control command.

A.3.10.2.1.6 Field

Field ::= Rel–Coord

–– Define the dimensions of the active area on the dispaly screen. The field command
establishes boundaries which “contain” text; that is boundaries for scroll areas, and to
which the format effector characters operate. The initial position is defined by the
current geometric drawing position. The relative coordinate parameters define a point on
the diagonally opposite side of the field which establishes the size of the field rectangular
area.

–– This command carries the functionality of the Data Syntax I, and III FIELD geometric
control command.

A.3.10.2.1.7 Blink process

Blink–Process ::= SEQUENCE { [1] INTEGER,
[2] INTEGER OPTIONAL,
[3] INTEGER OPTIONAL,
[4] INTEGER OPTIONAL }

–– Establish a Blink process in which the colour map is dynamically altered for a specified
interval and phase. The first integer represents the colour map address of the Blink To
colour, then the On interval, the Off interval and the Phase Delay in 1/10 of a second
respectively. The capability to handle Blink processes is very terminal model dependent.
In general Blink processes can be used to simulate any other blink capability available in
any data syntax, within the limits of the available memory assigned for such operations,
as specified in boundary value conditions. However Blink processes cannot easily be
simulated in display environments which do not present sufficient capabilities.

–– This command carries the functionality of the Data Syntax I, and III BLINK geometric
control command.

A.3.10.2.1.8 Wait

Wait ::= INTEGER

Fascicle VII.5 – Rec. T.101 57

–– Establish a time delay in processing presentation data for the time specified in units of
1/10 of a second. Although the Wait command is very simple, it provides very great
problems in conversion. This is because the wait command is a dynamic control
command. Presentation dynamics cannot be guaranteed in conversion because the order
of presentation commands may have to be altered to accommodate for differences in the
terminal model between two data syntaxes. Conversion of the wait command should only
be attempted when the source and target presentation processes are in synchronization,
i.e. when no sorting of presentation commands is necessary in the conversion, or at the
end of a unit (page) of data.

A.3.10.2.2 Geo control command–2

Geo–Control–Command–2 ::= CHOICE { [1] Display–Element–Attributes,

[2] Control–Element–Attributes }
–– Geometric control commands analogous to those in Data Syntax II.

–– Display Element Attributes pertain to the output display primitives. Some of this
primitives may be similar to those in Geo–Control–Command–1 section, however the
side effects are different for these commands.

–– Control Element Attributes establish the display transformation, clipping and work
station control functions which are unique to the display environment associated with
Data Syntax II.

–– The use of bundle facilities is for further study.

A.3.10.2.2.1 Display element attributes

Display–Element–Attributes
::= CHOICE {

[1] IMPLICIT Line–Attributes,
[2] IMPLICIT Marker–Attributes,
[3] IMPLICIT Fill–Area–Attributes }

Line–Attributes ::= SET {
[1] IMPLICIT Line–Type OPTIONAL,
[2] IMPLICIT Line–Width–Scale–Factor OPTIONAL,
[3] IMPLICIT Polyline–Colour–Index OPTIONAL }

Line–Type ::= INTEGER {
solid
(0),
dashed
(1),
dotted
(2),
dashed–dotted

(3),
implementation dependent

(4) }
Line–Width–Scale–Factor ::= REAL

58 Fascicle VII.5 – Rec. T.101

Polyline–Colour–Index
::= Colour–Index

Marker–Attributes
::= SET {

[1] IMPLICIT Marker–Type OPTIONAL,
[2] IMPLICIT Marker–Size–Scale–Factor OPTIONAL,
[3] IMPLICIT Polymarker–Colour–Index

OPTIONAL }
Marker–Type

::= INTEGER {
dot
(0),
plus
(1),
asterisk
(2),
circle
(3),
diagonal–cross

(4) }
Marker–Size–Scale–Factor ::= REAL

Polymarker–Colour–Index
::= Colour–Index

Fill–Area–Attributes
::= SET {

[1] IMPLICIT Fill–Area–Interior–Style OPTIONAL,
[2] IMPLICIT Fill–Area–Colour–Style OPTIONAL,
[3] IMPLICIT Fill–Area–Style–Index OPTIONAL,
[4] IMPLICIT Pattern–Reference–Point OPTIONAL,
[5] IMPLICIT Pattern–Vectors OPTIONAL }

Fill–Area–Interior–Style ::= INTEGER {
hollow

(0),
solid

(1),
pattern

(2),
hatch

(3) }
Fill–Area–Colour–Index ::= Colour–Index

Fill–Area–Style–Index
::= INTEGER {

–– For interior style pattern the fill area style index selects a pattern defined by “Fill pattern
control string”.

Fascicle VII.5 – Rec. T.101 59

–– For interior style hatch the following styles are selected:
vertical–lines

(0),
horizontal–lines

(1),
slope–45–degree–lines

(2),
slope–45–degree–lines

(3),
crossed–lines–vertical–and–horizontal–lines

(4),
crossed–lines–45–and–45–degrees

(5) }
Pattern–Reference–Point ::= Abs–Coord

Pattern–Vectors
::= SEQUENCE { Abs–Coord, Abs–Coord }

–– The origin of the NDC space an the first point defines the pattern height vector. The
origin of the NDC space an the second point defines the pattern widht vector.

Colour–Index
::= CHOICE {

[1] IMPLICIT Basic–Colour–Selection,
[2] IMPLICIT Indexed–Colour–Selection }

A.3.10.2.2.2 Control element attributes

Control–Element–Attributes
::= CHOICE {

[1] WS–Management–Primitives,
[2] Transformation–Primitives }

WS–Management–Primitives ::= CHOICE {
open–workstation

[1] IMPLICIT INTEGER,
 –– WS Identifier

close–workstation
[2] IMPLICIT INTEGER,

 –– WS Identifier
activate–workstation

[3] IMPLICIT INTEGER,
 –– WS Identifier

deactivate–workstation
[4] IMPLICIT INTEGER,

 –– WS Identifier
clear–workstation

[5] IMPLICIT INTEGER,
 –– WS Identifier

set–defaults [6] IMPLICIT NULL,
update–workstation [7] IMPLICIT Update–WS,

60 Fascicle VII.5 – Rec. T.101

deferral–state
[8] IMPLICIT Deferral–State }

Update–WS ::= SEQUENCE {

workstation–identifier
INTEGER,

regeneration–flag
INTEGER { perform (0),

postpone
(1) } }

Deferral–State ::= SEQUENCE {

workstation–identifier

INTEGER,
deferral–mode

INTEGER { asap
(0),

bnil
(1),

bnig
(2),

asti
(3) }

implicit–regeneration
INTEGER { suppressed (0),

allowed
(1) } }

Transformation–Primitives ::= SET {
[1] IMPLICIT WS–Window OPTIONAL,
[2] IMPLICIT WS–Viewport OPTIONAL,
[3] IMPLICIT Clipping–Rectangle OPTIONAL }

WS–Window
::= SEQUENCE {

workstation–Identifier
INTEGER,

first–point Abs–Coord,
second–point

Abs–Coord }
WS–Viewport ::= SEQUENCE {

workstation–identifier
INTEGER,

xmin REAL,
xmax REAL,
ymin REAL,
ymax REAL }
Clipping–Rectangle ::= SEQUENCE {

Fascicle VII.5 – Rec. T.101 61

first–point Abs–Coord,
second–point

Abs–Coord }
A.3.10.3 Geometric coordinates

Coordinate data for geometric operations is stored in terms of normalized display
coordinates in all three source data syntaxes. However, the exact details of the number format
differ significantly between the approach taken in data syntaxes DS I and DS III and that taken in
data syntax DS II. Since the purpose of the IDS is for interworking, differences with respect to
the number format should be avoided. Therefore, within the IDS a simple numbering scheme
based on the ASN.1 signed REAL data type is used. ASN.1 REAL numbers are self–delimiting
and of arbitrary length, so there is no difficulty with precision and no need to assign special bit
fields to determine the length of the number. A coordinate can therefore be represented as a pair
of numbers. The mapping of a real data field to a numeric data field in any of the data syntaxes is
dependent upon that particular data syntax. For the case of data syntaxes DS I and DS III the
normalized unit display area is mapped to the fractional part (i.e. mantissa part) of the real
number field. For DS II both the mantissa and exponent of the real number are used.

Since three dimensional coordinate specifications are optionally available in all of the
data syntaxes, an integer triplet is optionally provided below. Because three dimensional
operation is optional, the projection to two dimensions must be defined so that three dimensional
information may be viewed in a two dimensional environment through interworking. A plane
projection which assumes Z = 0 is used.

Coord ::= IMPLICIT CHOICE { Abs–Coord, Rel–Coord }

Abs–Coord ::= CHOICE { [1] X–Y,
Abs–Coord

[2] X–Y–Z }
X–Y ::= SEQUENCE { REAL, REAL }

–– Absolute X, Y Coordinates

X–Y–Z ::= SEQUENCE { REAL, REAL, REAL }

–– Absolute X, Y, Z Coordinates

Rel–Coord ::= CHOICE {

[3] DX–DY,
[4] DX–DY–DZ }

DX–DY ::= SEQUENCE { REAL, REAL }

–– Relative DX, DY Coordinates

DX–DY–DZ ::= SEQUENCE { REAL, REAL, REAL }

–– Relative DX, DY, DZ Coordinates

A.3.11 xe ""§Animation control string

62 Fascicle VII.5 – Rec. T.101

The capability to achieve dynamic or animated effects on the presentation device is
highly dependent on the terminal model and display environment. Several of the terminal data
syntaxes provide some specialized capabilities to achieve dynamic effects. For example, data
syntaxes DS I and DS III include three phase flash (blink) capability and data syntax DS III
includes a colour map phased blink function. The dynamic effects generated by these special
functions will not in general be preserved in conversion. This is especially true since the order of
the display of presentation entities may be altered by the conversion process to account for
differences in the terminal model. Except for flash (blink) it is necessary for the conversion
process to take into account dynamic effects even though it cannot convert them faithfully, since
they may significantly alter the final resultant picture.

A sophisticated terminal model dependent animation capability is available in data
syntax DS I. This capability makes use of a multi–plane terminal model in which the order and
relative position of the various planes may be altered. The effects which may be generated by
this capability are unique to the environment in which they were defined. The animation control
commands from data syntax DS I must, however, be included in the interworking data syntax,
since they affect the final result of the display. The conversion process must generate the correct
final resultant picture.

Animation–Control–String
::= CHOICE { mvi–start

[1] NULL,
mvi–stop

[2] NULL,
mvi–repeat–start

[3] MVI–Repeat–Start,
mvi–repeat–end

[4] NULL,
mvi–move

[5] MVI–Move }
–– MVI–Start is a function from Recommendation T.101 DS I (MVI Code set position 2/0)

–– MVI–Stop is a function from Recommendation T.101 DS I (MVI Code set position 2/1)

A.3.11.1 MVI–repeat start

MVI–Repeat–Start ::= SEQUENCE { GRAPHICSTRING, INTEGER }

–– General character (REPEAT START) from Recommendation T.101 DS I (MVI Code set
position 3/12 or 11/12), followed by a count of the number of repetitions

–– MVI–Repeat–End is a function from Recommendation T.101 DS I (MVI Code set
position 3/13 or 11/13)

A.3.11.2 MVI–move

MVI–Move ::= SEQUENCE { Move–Origin, Move–Termination, Move–Time }

–– MVI–Move is a function from Recommendation T.101 DS I (MVI Code set position
3/10 or 11/10)

Fascicle VII.5 – Rec. T.101 63

Move–Origin
::= Abs–Coord

–– X, Y Parameters codes as packed binary fractions

Move–Termination ::= OCTETSTRING

–– X, Y Parameters codes as packed binary fractions

Move–Time ::= INTEGER

–– Numeric count of the time period for the move operation in units of 1/10 of a second

A.3.12 xe ""§Segment control string

Data syntax II provides an optional segment storage and editing capability. One or two
storage memories for display segments are retained. Editing commands may produce dynamic
effects by altering the stored display segment and causing the redisplay of the picture. A display
segment may contain any geometric string data as well as the special segment attributes as
described below.

Segment control is similar to animation control in that it provides functions which
control special display environment dependent capabilities. Since analogous functions are not
available in either data syntax I or III, these functions must be handled in the conversion process.
For the conversion of information from data syntax II into data syntax I or III only one
“Workstation” (or display screen) is used.

Segment–Control–String
::= CHOICE { [1] Work–Station–Dependent,

[2] Work–Station–Independent }
Work–Station–Dependent ::= CHOICE { [1] W–Create,

[2] W–Close,
[3] W–Rename,
[4] W–Delete–1,
[5] W–Delete–2,
[6] W–Redraw,
[7] W–Set–Highlight,
[8] W–Set–Visibility,
[9] W–Set–Seg–Transparent,
[10] W–Set–Priority }

A.3.12.1.1 W–create

W–Create ::= INTEGER

–– Open the identified segment.

A.3.12.1.2 W–close

W–Close ::= INTEGER

–– Close the identified segment.

64 Fascicle VII.5 – Rec. T.101

A.3.12.1.3 W–rename

W–Rename ::= SEQUENCE {
old–segment–number

[1] INTEGER,
new–segment–number

[2] INTEGER }
–– Rename old segment number to new segment number.

A.3.12.1.4 W–delete–1

W–Delete–1 ::= SEQUENCE {
work–station–id

[1] INTEGER,
segment–number

[2] INTEGER }
–– Delete identified segment from workstation.

A.3.12.1.5 W–delete–2

W–Delete–2 ::= INTEGER

–– Delete the identified segment from all workstations.

A.3.12.1.6 W–redraw

W–Redraw ::= INTEGER

–– Redraw the identified workstation.

A.3.12.1.7 W–set highlight

W–Set–Highlight ::= SEQUENCE {

highlight–segment–number
[1] INTEGER,

highlight–attribute
[2] INTEGER }

–– Set highlight attribute of identified segment.

A.3.12.1.8 W–set visibility

W–Set–Visibility ::= SEQUENCE {

visibility–segment–number
[1] INTEGER,

lity–attribute
[2] INTEGER }

–– Set visibility attribute of identified segment.

Fascicle VII.5 – Rec. T.101 65

	a) If two countries implement the same data syntax, then interworking can use the same data syntax (DS I, or DS II, or DS III).
	b) If two countries implement two different data syntaxes, then interworking can use either:
	i) the interworking data syntax (IDS) as defined herein, or
	ii) any one of the three data syntaxes and convert directly between DS I/DS II/DS III. The data syntaxes may be identified by the ESC 2/5 F mechanism described in § 4.4.2 of the main body of Recommendation T.101.

